题目链接:
problem description:
is an infinite sequence of integers that satisfies to Fibonacci condition F i + 2 = F i + 1 + Fi for any integer i. Write a program, which calculates the value of Fn for the given values of Fi and Fj.
Input
The input contains five integers in the following order: i, Fi, j, Fj, n. −1000 ≤ i, j, n ≤ 1000, i ≠ j, −2·10 9 ≤ Fk ≤ 2·10 9 ( k = min( i, j, n), …, max( i, j, n)).
Output
The output consists of a single integer, which is the value of Fn.
Sample
input | output |
---|---|
3 5 -1 4 5 | 12 |
Hint
In the example you are given: F 3 = 5, F −1 = 4; you asked to find the value of F 5. The following Fibonacci sequence can be reconstructed using known values:
…, F −1 = 4, F 0 = −1, F 1 = 3, F 2 = 2, F 3 = 5, F 4 = 7, F 5 = 12, …
Thus, the answer is: F 5 = 12.
解题分析:
对于fibonacci序列a,X0,X1,X2。。。。。b。假设这个序列是存在的。X是代表哪些未知的数。要如何才能判断这个序列是有解的呢?
给定a,b的值。枚举x0然后去确定b的那个空要填什么数,如果该数等于b那么就找到了解。然而貌似每次这样循环找速度会很慢的。fibonaccig公式
f[i] = f[i-1] + f[i-2] 线性方程,可以用矩阵来优化求第n项。
[f[1], f[0]] *[ 11 01] = [f[2], f[1]], 令unit = [ 11 0 1] , 求第n项,则先求矩阵ret = [f[1], f[0]] * unit^(n-1)
1 def matrixMul(a, b): 2 c = [[0 for i in xrange(2)] for j in xrange(2)] 3 for i in xrange(2): 4 for j in xrange(2): 5 for k in xrange(2): 6 c[i][j] += a[i][k]*b[k][j] 7 return c 8 9 def POW(unit, x):10 a = unit; b = [ [1, 0], [0, 1] ] 11 while x>0:12 if x&1:13 b = matrixMul(b, a)14 a = matrixMul(a, a)15 x >>= 116 return b17 18 def work(i, a, j, b, n):19 unit = [ [1, 1], [1, 0] ]20 mat = POW(unit, j-1)21 l = -2000000000; r = 2000000000; mid = -122 while l<=r:23 mid =(l+r)>>124 tmp = mid*mat[0][0]+a*mat[1][0]25 if tmp > b: r = mid-126 elif tmp < b: l = mid+127 else : break28 mat = POW(unit, n-1)29 print mid*mat[0][0]+a*mat[1][0] if n>0 else a30 31 if __name__ == '__main__':32 i, a, j, b, n = map(int, raw_input().split())33 if i > j:34 tmp = i; i = j; j = tmp35 tmp = a; a = b; b = tmp;36 j -= i; n -= i; i=037 work(i, a, j, b, n)